Planning in FOND domains with TEGs expressed in LTL

Eleni Triantafillou
Under the supervision of
Sheila McIlraith
Outline

• Automated Planning
• FOND Domains
• Linear Temporal Logic (LTL)
• Controller Synthesis: The problem and the approach
Planning Problem

• Planning Domain
 – S: set of states
 – A: set of actions
 – s0: Initial State
 – f(a, s): transition function
 – Prop: set of propositions

• Goal
 – G: set of goal states
Stealing Cookies
Planning Domain

Propositions:
- EatingCookie
- Caught
- Hungry
- JarReachable
- PinkSocks
- Hiding

Actions:
- OpenJar
- CloseJar
- Run!
- StealCookie
- Hide
- EatCookie

Initial State:
(JarReachable, Hungry)
Specifying Actions

Action: Run!

- **Preconditions**: StoleCookie, Hiding, Caught
- **Effects**
 - Adds: Running
 - Deletes: Hiding
Planning Goal

Goal: (EatingCookie)
FOND

• Type of domains that are:
 – Fully-Observable: The planner has complete information about the initial state
 – Non-deterministic: There may be more than one possible values of f(a, s), for some action a that is applicable in some state s.
Non-Determinism

Jar tips over?

Or not?
Types of Plans for FOND

• Policy: A function that maps states to actions

• Types of policies:
 – **Weak**: Achieves the goal under one set of outcomes
 – **Strong**: Always achieves the goal in finite steps
 – **Strong Cyclic**: Every state reachable from the initial state can *eventually* reach the goal (PRP)
LTL

□ \(\varphi \) “Always \(\varphi \)”

◇ \(\varphi \) “Eventually \(\varphi \)”

○ \(\varphi \) “Next \(\varphi \)”

\(\varphi \) U \(\psi \) “\(\varphi \) Until \(\psi \)”
Temporally Extended Goals (TEGs)

\[\square \left(\text{CookiesRemaining} \implies \Diamond \left(\text{StealingCookie} \land \left(\bigcirc \text{EatingCookie} \right) \right) \right) \]

\((\text{StealingCookie} \cup (\text{Caught} \lor \text{JarEmpty})) \)
Compiling the LTL away

Theorem:
For every LTL formula ϕ, there exist a Büchi Automaton that accepts all and only the models of ϕ

A Büchi automaton: $<\Sigma, Q, Q0, \rho, F>$ where
- Σ: input Alphabet
- Q: set of states
- $q0$: initial state
- ρ: transition function
- F: set of accepting states
Controller Synthesis

The problem:

Input: A Non-Deterministic domain D representing some system and an LTL formula ϕ.

Output: A Finite State Controller (FSC) that fairly realizes ϕ on D.
Controller Synthesis

Given a domain $D = \langle A, \text{Prop}, S, s_0, f \rangle$, a FSC for D is a tuple:

$\text{FSC} = \langle C, c_0, \Gamma, \Lambda, \delta, \Omega \rangle$ where

- C: set of controller states
- c_0: initial controller state
- $\Gamma = S$: input alphabet
- $\Lambda = A$: output alphabet
- δ: transition function
- Ω: controller output function
The Approach

Planning Domain $D = \langle A, \text{Prop}, S, s_0, f \rangle$

Automaton $A = \langle S, Q, q_0, \rho, F \rangle$

Domain $D' = \langle A, \text{Prop}', (S, Q), (s_0, q_0), f' \rangle$
Reference

Paper on Controller Synthesis representing the current state-of-the-art:

Authors: Patrizi, Lipovetzky, Geffner
Published in IJCAI’13
Thank you!

Questions?